Effect of increasing zinc supplementation on post-transit performance, behavior, blood and muscle metabolites, and gene expression in growing beef feedlot steers


Fifty-four Angus-cross steers (297 kg ± 12) were stratified by body weight (BW) to pens (six steers per pen) to determine the effects of supplemental Zn on posttransit growth performance and blood and muscle metabolites. Dietary treatments started 25 d before trucking: control (CON; analyzed 54 mg Zn/kg DM), industry (IND; CON + 70 mg supplemental Zn/kg DM), and supranutritional Zn (SUPZN; CON + 120 mg supplemental Zn/kg DM). Supplemental Zn was bis-glycinate bound Zn (Plexomin Zn; Phytobiotics North America, Cary, NC). On day 0, steers were loaded onto a commercial trailer and transported in 18 h (1,822 km). Individual BW was recorded on days -26, -25, -1, and 0 (pre-transit), 1 (posttransit), 6, 27, and 28. Blood was collected on days -1, 1, 6, and 27. Longissimus thoracis biopsies were collected on days -1, 1, and 28. Daily individual feed disappearance was recorded via GrowSafe bunks. Data were analyzed using Proc Mixed of SAS with fixed effect of diet and steer as the experimental unit (growth performance, blood: n = 18 steers per treatment; muscle: n = 12 steers per treatment). Individual initial BW was used as a covariate in BW analysis. Contrast statements to test linear, quadratic, and Zn effects were used to analyze performance and blood parameters. Repeated measures analysis was used for posttransit DMI recovery and weekly posttransit DMI and Zn intake with the repeated effect of time. MetaboAnalyst 5.0 was utilized for statistical analysis of day 1 (off truck) muscle metabolites. Plasma Zn linearly increased due to Zn on days 1, 6, and 27 (P = 0.01), and off-truck (day 1) serum lactate increased over day -1 by 20%, 0%, and 20% in CON, IND, and SUPZN, respectively (Quadratic: P = 0.01). Muscle lactate tended to increase posttransit in CON and IND (P ≤ 0.07) but not SUPZN. Muscle metabolites relating to amino acid and nitrogen metabolism were increased in all treatments posttransit (P ≤ 0.02), and alanine-glucose cycle metabolites tended to increase in CON and IND (P ≤ 0.07). Steers supplemented with Zn recovered pretransit DMI quicker than CON (by d 2: P = 0.01), while IND had greater overall posttransit DMI than CON with SUPZN intermediate (P = 0.04), and Zn-fed steers had greater ADG posttransit (P = 0.04). Zinc supplementation mitigated muscle or serum lactate increases due to transit and increased posttransit ADG.

PMID: 35917831 PMCID: PMC9512101 DOI: 10.1093/jas/skac246

Source: Katie J Heiderscheit 1, Stephanie L Hansen 1

Leave a Reply

Related Posts
Exploring the Future of Pharmaceutical API Manufacturing in India

The pharmaceutical industry is rapidly evolving, and India has emerged as a key player in the global market for Active Pharmaceutical Ingredients (APIs). With its robust infrastructure, skilled workforce, and supportive policies, India is poised to shape the future of pharmaceutical API manufacturing. In this blog, we will delve into the positive aspects and potential […]

The Role of Sodium Butyrate in Gut Health and Digestion

The gut plays a vital role in overall health and well-being, and maintaining gut health is essential for optimal digestion and nutrient absorption. Sodium butyrate is a short-chain fatty acid that is produced naturally by the beneficial bacteria in the gut. It plays an important role in maintaining gut health and supporting healthy digestion. In […]

Benefits of Iron Polymaltose Complex

Iron is an essential mineral that plays a critical role in the production of hemoglobin, the protein in red blood cells that carries oxygen throughout the body. Iron deficiency can lead to anemia, a condition that can cause fatigue, weakness, and other health problems. Iron polymaltose complex is a form of iron supplement that is […]

Download Brochure
Contact Us